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Abstract

Automated incident detection and alternative path planning form important activities within a modern expressway tra�c

management system which aims to ensure a smooth ¯ow of tra�c along expressways. This is done by adopting e�cient
technologies and processes that can be directly applied for the automated detection of non-recurrent congestion, the formulation
of response strategies, and the use of management techniques to suggest alternative routes to the road-users, resulting in

signi®cant overall reductions in both congestion and inconvenience to motorists. A delicate balance has to be struck here
between the incident detection rate and the false-alarm rate. This paper presents the development of a hybrid arti®cial
intelligence technique for automatically detecting incidents on a tra�c network. The overall framework, algorithm development,
implementation and evaluation of this hybrid fuzzy-logic genetic-algorithm technique are discussed in the paper. A cascaded

framework of 11 fuzzy controllers takes in tra�c indices such as occupancy and volume, to detect incidents along an expressway
in California. The ¯exible and robust nature of the developed fuzzy controller allows it to model functions of arbitrary
complexity, while at the same time being inherently highly tolerant of imprecise data. The maximizing capabilities of genetic

algorithms, on the other hand, enable the fuzzy design parameters to be optimized to achieve optimal performance. The results
obtained for the tra�c network give a high detection rate of 70.0%, while giving a low false-alarm rate of 0.83%. A comparison
between this approach and four other incident-detection algorithms demonstrates the superiority of this approach. 7 2000

Elsevier Science Ltd. All rights reserved.
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1. Introduction

Incident detection has become an important and
sophisticated task in today's complex engineering en-
vironment, spanning areas ranging from air navigation
and tra�c networks to power systems and computers.
Incidents on urban expressways include accidents, dis-
abled vehicles, spilled loads, maintenance, detector
malfunctions and other activities that disrupt normal
tra�c ¯ow, causing delays to motorists and degraded

road safety conditions. For more e�ective tra�c man-
agement systems, an automated incident-detection al-
gorithm that is reliable and quick at detecting
incidents is essential. Early detection of incidents is
vital for the formulation of e�ective response strategies
and the provision of real-time information to motor-
ists.

Research in automated incident-detection techniques
started in early 1970s with the implementation of inter-
state freeway systems. These techniques typically divide
the freeway zones into sections of 500±1000 m in
length. Inductive loop detectors are placed in individ-
ual lanes at the boundary of each section to collect
tra�c volume, occupancy and average speed. The data
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collected from upstream and downstream detector
stations of each section is transmitted to a tra�c man-
agement centre at regular intervals of 30 s for analysis
and detection. Fig. 1 shows the tra�c ¯ow for a sec-
tion of an expressway.

1.1. Incident-detection algorithms

The expressway incident-detection algorithms in the
past have included techniques such as decision trees
for pattern recognition (Payne et al., 1976), time series
analysis (Ahmed and Cook, 1982) and Kalman ®lters
(Willsky et al., 1980). The three main incident-detec-
tion algorithms are brie¯y described below.

1.1.1. California algorithm
The California algorithm consists of a family of 11

algorithms that detect incidents based on discrepancies
in occupancy values (Payne et al., 1976). Typically, the
algorithms use 60-s average occupancy data from two
adjacent detector stations along the freeway, on the
upstream and downstream sides, to compute absolute,
relative and temporal di�erences in lane occupancy. A
binary decision tree structure, which classi®es tra�c
conditions between the two stations into one of several
states, provides the thresholds against which the input
features are then compared. One of the better-known
algorithms, the California algorithm No. 8, uses a 5-
min roll-wave suppression logic that helps to reduce
false alarms due to shock waves from downstream sec-
tors. The four input features and ®ve threshold values
in the algorithm are calibrated with historic incident
data before application (Cheu, 1994).

The main disadvantage of California algorithm No.
8 is that it uses only occupancy-related variables as
inputs. Volume-related data is never taken into
account. The other disadvantages include its input fea-
tures and a 60-s application interval, which results in a
minimum time lag of at least 2 min to detect an inci-
dent. The main unique advantage of the California al-
gorithm No. 8 is a low false-alarm rate(FAR).

1.1.2. McMaster algorithm
The McMaster algorithm is based on catastrophe

theory (Persaud et al., 1990). Tra�c volume and occu-
pancy values from the fast lane of a detector station are
used as its inputs. The algorithm operates by compar-
ing ®eld data with station-speci®c volume-occupancy
templates. Speci®cally, two di�erent volume-occupancy
templates, one for detector stations with normal tra�c
and the other for stations with recurring congestion,
are used. If an incident condition is found to exist for
three consecutive intervals, an alarm is sounded.

The McMaster algorithm has some distinct advan-
tages in comparison to the California algorithm No. 8.
In this algorithm, malfunction of a downstream detec-
tor does not a�ect incident detection, unlike in Califor-
nia algorithm No. 8. It uses volume as an input in
identifying possible incidents, unlike California algor-
ithm No. 8, which takes only occupancy inputs into
account. The mean time to detect (TTD) an incident is
30 s faster than in California algorithm No. 8. The
McMaster algorithm takes recurring congestion into
account in identifying incidents, leading possibly to a
lower FAR.

The main disadvantage of the McMaster algorithm
is that only data from the fast lane is evaluated. A
longer incident-detection time is taken for an incident
occurring on the shoulder or the right-most travel
lane, which is detected only after it a�ects the tra�c
¯ow in the fast lane.

1.1.3. Minnesota algorithm
The Minnesota algorithm (Stephanedes and Chassia-

kos, 1993) depends on the occupancy values as input,
and operates on 30-s intervals. Speci®cally, a 1-min
average occupancy across all lanes, at the upstream
and downstream stations, is used as the input. Its
detection concept is based on comparing the average
spatial occupancy di�erences before and after an inci-
dent.

The Minnesota algorithm has two main disadvan-
tages. First, it uses only occupancy values as input,
and ignores volume values. During low-volume con-
ditions, the lack of volume as input may lead to many
false alarms. Second, the detection time is extended to
3 min, as the algorithm uses occupancy values from
the past six time intervals.

Fig. 1. Pictorial view of tra�c ¯ow along an expressway.
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1.2. AI-based models

The growing interest in arti®cial intelligence (AI)
techniques has presented new opportunities to provide
solutions to the increasing challenges of the future. AI-
based techniques such as neural networks, fuzzy logic
and genetic algorithms (GAs) (Goldberg, 1989; Hay-
kin, 1992; Bojadziev and Bojadziev, 1995) are highly
adaptive and can devise solutions to problems where
traditional methods cannot be e�ectively applied. AI-
based techniques have shown great potential in the
development of automated incident-detection algor-
ithms (Cheu, 1994) with the promise to give high inci-
dent-detection rates and low FARs. Fig. 2 illustrates
the automated incident-detection process using AI
techniques.

The application of arti®cial neural networks (ANNs)
for freeway incident detection was ®rst investigated in
(Cheu et al., 1991). Among the ANNs tested, a multi-
layer feed-forward network performed well by giving a
high DR rate and a low FAR (Cheu and Ritchie,
1995). The inputs to the neural network consisted of
30-s occupancy and volume ®gures for ®ve consecutive
time intervals at the upstream station, as well as the
data for three consecutive intervals from the down-
stream station. The single output neuron was used to
classify the tra�c condition as `incident' or `incident-
free'. The neural network was trained on simulated
incident data, and tested on simulated as well as real
incident data obtained from a freeway in California.

Abdulhai (1996) used probabilistic neural networks
(PNNs) for the incident-detection problem. The neural
network developed there was tested on real as well as
simulated data. The results indicated that PNN devel-
oped in (Abdulhai, 1996) had a higher DR and a
higher FAR which is undesirable) for the same set of
test data used in (Cheu, 1994), and o�ered relatively
high adaptability from one site to another. The main
limitation of the PNN was a large memory and com-
putation time required, due to the large size of PNN
pattern layer.

1.3. Main objectives

Despite extensive research, many tra�c-management
agencies would still prefer to have higher DR and

lower FARs and incident-detection times, than those
that can be o�ered by existing techniques. This has
motivated the authors to develop a hybrid technique,
using a genetic algorithm (GA) in a fuzzy system
framework, for speedy and accurate incident detection.
To the authors' knowledge, it is the ®rst time that
such hybrid fuzzy-GA combination has been used for
tra�c network incident detection.

The main objectives for this automated incident-
detection algorithm are as follows:

1. to determine incident occurrence using di�erent traf-
®c indices such as average occupancy and volume;

2. to have a high incident-detection rate;
3. to have a low FAR;
4. to have a low average mean TTD after an actual

incident occurrence.

2. Fuzzy logic and genetic algorithm

This section provides the relevant theoretical con-
cepts and equations used in the development of the
hybrid fuzzy-logic/GA-based approach for network
incident detection. AI techniques can be classi®ed into
traditional AI, i.e. expert systems and new AI tech-
niques (Bojadziev and Bojadziev, 1995; Haykin, 1992;
Goldberg, 1989) that can handle numerical compu-
tations such as fuzzy logic, GAs and neural systems.

2.1. Fuzzy logic

Fuzzy logic is a human-inference-oriented AI tech-
nique that incorporates the uncertainty and abstract
nature inherent in human decision-making into intelli-
gent control systems. It captures the approximate and
qualitative boundary conditions of system variables by
fuzzy sets with membership functions. A fuzzy system
implements functions in near-human terms, i.e. IF-
THEN linguistic rules, with reasoning by fuzzy logic
(Bojadziev and Bojadziev, 1995).

2.1.1. Operations on fuzzy sets
The di�erence between classical and fuzzy set theory

is that classical theory allows only the crisp, binary
values 1 or 0 (true or false), whereas fuzzy logic allows
partial set memberships. The extent to which an el-
ement x belongs to a fuzzy set A is characterized by its
degree of membership, mA�x�4 �0,1�: The three most
commonly used fuzzy operators, AND, OR and NOT
are de®ned as follows.

Union of two sets; A [ B, corresponds to the OR
operation.

mA[B�x� � max�mA�x�, mB�x�� �1�Fig. 2. Tra�c data processing for automated incident detection.
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Intersection of two sets; A\B, corresponds to AND
operation.

mA\B�x� � min�mA�x�, mB�x�� �2�
Complement of a set; A, corresponds to the NOT op-
eration.

m �A�x� � 1ÿ mA�x� �3�

2.1.2. Fuzzy control rules
A fuzzy controller consists of a set of control rules.

Each rule is a linguistic statement about the control
action to be taken for a process condition given by the
following rule structure:

IF hconditioni THEN hcontrol actioni:
The hconditioni is termed as the antecedent and the
hcontrol actioni is the consequence. In linguistic ap-
proximation by fuzzy logic,each of these terms is rep-
resented by a preference fuzzy membership function to
establish a value in the interval [0,1].

2.1.3. Fuzzi®cation, rule bases and defuzzi®cation
The fuzzi®cation of a crisp value to a fuzzy termi-

nology is characterized by a scaling factor and a quan-
tization process. After quantization (Bojadziev and
Bojadziev, 1995), a degree-of-membership function is
applied to derive its membership value, or `belonging-
ness', in each of the fuzzy linguistic sets. Typically, tri-
angular or Gaussian membership functions like those
shown in Fig. 3 are used.

The membership value mx of an element x in a fuzzy
set is calculated for triangular fuzzy sets as:

mx �

8>><>>:
1 if x � B
�xÿ A�=�Bÿ A� if B > x > A
�Cÿ x�=�Cÿ B� if B < x < C
0 if xrC or xRA

�4�

and for Gaussian fuzzy sets as:

m�x� � exp

�
ÿjxÿ ajb

s

�
; �5�

Here a is the center of the Gaussian ®eld corre-
sponding to a membership value of 1, b is a positive
number, typically chosen to be 2, and s is the width of
the Gaussian ®eld.

After the input variables have been fuzzi®ed, they
are fed into a two-dimensional fuzzy decision table to
derive the output variable. Using the look-up table,
fuzzy control actions are computed using the min-max
functions in a fuzzy control system. The min operation
is performed on the antecedents of the rule, followed
by the max operation on the consequences to deter-
mine the ®nal control actions. The control actions are
used in the defuzzi®cation process, where a crisp
executable value is computed.

There are four major defuzzi®cation rules; which
consist of the maximizer technique, the weighted aver-
age method, the centroid method and the Singleton
method (Bojadziev and Bojadziev, 1995). The Single-
ton method represents each fuzzy output set as a single
output value by using a weighted average to combine
multiple output actions. It treats each output degree-
of-membership function as a rectangle, and hence con-
siderably reduces the computation. Once a single out-
put value has been obtained, this is then multiplied by
an output-scaling factor to obtain a corresponding
crisp, executable control action.

2.1.4. Suitability of fuzzy logic for incident detection
Fuzzy logic is popular for diagnosis and detection

kinds of applications because it is conceptually easy to
understand, since it is based on natural language. It is
tolerant of imprecise data, and is therefore more
robust as compared to conventional controllers. It can
also model functions of arbitrary complexity, and is
very adaptive in nature. The disadvantages of using
fuzzy logic are that it may be di�cult obtaining good
membership function graphs representing the actual
control parameters to be modelled. The rule-base for
the fuzzy decision table may be di�cult to dictate, and

Fig. 3. Example of a triangular and a Gaussian membership function.
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experience or an expert's knowledge rules may not
always give the optimised solutions.

2.2. Genetic algorithms

GAs are search algorithms based on the mechanics
of natural selection and Darwinian survival of the ®t-
test. A GA uses coded strings (chromosomes) of
binary numbers (genes) for the search process. Each
chromosome is termed as an individual and a popu-
lation of individuals evolves from generation to gener-
ation, with only the most suited individuals likely to
survive and generate o�-spring, thereby transmitting
their genetic material to the next generation. GA are
essentially performed by three operators, namely:
reproduction, crossover and mutation (Goldberg,
1989).

2.2.1. Reproduction, crossover and mutation
The initial population size in genetic algorithms,

typically between 30 and 200, has a substantial e�ect
on the ultimate performance and e�ciency in a genetic
search. Reproduction occurs when new individuals are
produced, whereby a new generation is formed by ran-
domly selecting the ®ttest individuals from an existing
generation, to breed. The selection procedure (Gold-
berg, 1989) generates a probability that the individuals
with higher ®tness values will be selected to reproduce
within a ®xed-size population in each generation,
resulting in individuals with higher ®tness values in the
new generation. Typically roulette-wheel or tourna-
ment selection schemes are used.

The crossover operator is used to produce o�springs
that are di�erent form their parents, yet inherit por-
tions of their parents' genetic material. A selected
chromosome is split into two or more parts (multiple-
point-crossover ) and recombined with another selected
chromosome which has also been split at the same
crossover point(s) to produce two new o�spring which
will replace weaker individuals in the population.
Crossover operations provide and introduce new
search spaces for further testing within the existing
hyperplanes into the new population. Mutation in a
chromosome is used to provide new genetic materials
by randomly selecting bits (genes) to be mutated and
subject them to inversion of values. The mutation op-
erator contributes by discovering new or restoring lost
genetic materials. Each GA generation is performed by
carrying out these three operators until a satisfactory
result is found, or the maximum number of gener-
ations is reached.

2.2.2. Objective ®tness functions and coding schemes
The application of GAs to optimisation problems

depends on the choice of the ®tness function and cod-
ing schemes used to code the design parameters. The

®tness function di�ers for individual problems and
depends essentially on the factors to be optimised or
minimised (Homaifar and McCormick, 1992). The
coding of the parameter set typically involve binary
coding, but decimal coding is more e�cient and ¯ex-
ible (Ng and Li, 1994), with shorter chromosome
lengths and reduced run-times of the GA. The formula
for decimal coding is given as:

C � Cmin � apÿ1b pÿ1 � � � � � a0b
0

b p
�Cmax ÿ Cmin�, �6�

where C 2 �Cmin,Cmax� is the decimal value being
coded,[Cmin,Cmax� denotes the decoding range,b is the
base value for coding, ap 2 �0, bÿ 1� is an unsigned
integer code and p is the number of digits used in the
coding which indicates the compromise between accu-
racy and speed in the evolution process.

2.2.3. Features of GAs
GAs are powerful because they consider a popu-

lation of points in the search space simultaneously,
and permit the optimisation of the whole parameter
set.They use objective functions to guide the search
and are therefore more robust in comparison to tra-
ditional search-and-optimisation techniques in achiev-
ing the optimal solution. GAs use probabilistic rules to
make decisions, and this has introduced an intellectual
capability in them. However, it may be di�cult to
obtain a suitable objective ®tness function for optimal
performance if binary coding were to be used. In ap-
plications where the variables are real numbers or inte-
gers, the importance of a gene is determined by its
location on the chromosome. Thus, mutation on one
part of the bit string will have a di�erent impact on he
variable settings than a mutation on another part of
the bit string. This problem, which is unavoidable in
these situations and is undesirable, has been termed
the `Hamming Cli�' e�ect (Homaifar and McCormick,
1992). It may drastically reduce the convergence time
of the GA.

3. Design of automated incident-detection algorithm for
tra�c network

This section deals with the design of the automated
incident-detection methodology developed to test inci-
dents along an expressway in California. It also covers
some aspects of the computer simulations. Simulated
detector data was generated using the INTRAS (Inte-
grated Tra�c Simulation) model (Cheu, 1994).

3.1. System overview and tra�c data

The automated incident-detection algorithm devel-
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oped here adopts a macroscopic, section method which
provides observations at two di�erent, adjacent sites,
upstream and downstream, at several segments, along
a stretch of expressway with data comparisons between
them; it works with aggregated information.

3.2. The study site

An expressway section in the westbound direction of
the SR-91 Riverside Freeway in Orange County, Cali-
fornia, between the SR-57 and Interstate 5 Freeways,
of approximately 5.0 miles in length, was selected as
the study site. The entire site has eight detector
stations, and the spacing of the detector stations varies
from 0.34 to 1.02 miles.

A schematic showing the lane geometry, together
with the spacing of the detector stations, is shown in
Fig. 4. Lane-speci®c volume and occupancy values
accumulated over 30-s intervals is used as the detector
data. The study site was divided into seven segments
using the detector stations as boundaries. These seg-
ments, numbered from 1 to 7 in the direction of the
tra�c ¯ow, are shown in Fig. 4.

Segment 0 was the segment upstream of the study
site, while segment 8 was that on the downstream side
of the study site. Upstream and downstream detector
stations, at the upstream and downstream ends, bound
every segment. For the ith freeway segment (where
i � 1, . . . ,7), segments i ÿ 1 and i + 1 were referred to
as the upstream and downstream segments of segment
i respectively.

3.3. Simulation data

The INTRAS model (Cheu, 1994), a microscopic
freeway tra�c-simulation model written to evaluate
di�erent incident-detection algorithms and ramp-con-
trol strategies, was used to generate detector data for
this study.

Detector outputs from the INTRAS simulation runs
were grouped into two independent data sets (i.e.,
set1.dat and set2.dat). For each data set, the number
of incidents in each expressway segment is listed in
Table 1.

The tra�c indices to be measured in the upstream
and downstream portions of the expressway are the
average occupancy and volume. For every set of tra�c
data, there are ®ve occupancy values upstream and
three occupancy values downstream, at time-intervals
of 30 s each. The same applies for the volume inputs,
giving a total of 16 inputs per data set. There are
35,000 data vectors in each of the two ®les, set1.dat
and set2.dat. Besides this, a smaller data ®le of 3000
data sets was created from set1.dat for training.

The tra�c data vectors would be input into the
automatic incident-detection algorithm of the fuzzy-
GA hybrid, and a fuzzy output obtained for each data
vector. For simplicity, the ®nal fuzzy output is con-
verted to give one of two output states, STATE 1 for
an incident detected or STATE 0 for the incident-free
state.

3.4. Implementation using fuzzy logic

In order for the program to be comprehensive and
thorough, the incident-detection algorithm reads in 12
out of the 16 columns of available data set for by con-
sidering the current data and two sets of past tra�c

Fig. 4. The study site.

Table 1

Number of incidents in each expressway segment in INTRAS simu-

lation runs

Data sets Segment numbers

0 1 2 3 4 5 6 7 8 Total

set1.dat 25 50 50 50 50 50 50 50 25 400

set2.dat 25 50 50 50 50 50 50 50 25 400
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data at times (t ), (t ÿ 1), (t ÿ 2) respectively at an
interval of 30 s for a total of 35,000 data vectors in the
upstream and downstream portions of each of the
eight segments.

The processes of fuzzi®cation, fuzzy control and
defuzzi®cation are applied in this algorithm, and ele-
ven fuzzy decision tables are employed in this case.
The block diagram for the fuzzy control is shown in
Fig. 5.

The algorithm allows the user to perform tra�c inci-
dent detection using (1) occupancy, (2) volume, and
(3) both occupancy and volume. The program basi-
cally reads in the set of required input tra�c data,
applies fuzzy logic to the inputs and evaluates the per-
formance of the fuzzy process. The ¯owchart of the
fuzzy process is shown in Fig. 6. The output of the
program indicates whether an incident has been
detected (STATE 1: incident) or not (STATE 0: inci-
dent-free state).

3.4.1. Multiplexer layer design
The fuzzy algorithm resembles a cascaded multi-

plexer design, and is divided into four di�erent layers,
simulating that of a neural network with an input
layer, two hidden layers and an output layer. The 12
data inputs are ®rst fuzzi®ed and input into the ®rst
fuzzy layer. The fuzzi®ed outputs from this layer are
subsequently fed into the next layer, and the same con-
tinues through to the last layer. The algorithm using
fuzzy set theory is shown in Fig. 7. Here `US' rep-
resents upstream and `DS' represents the downstream
side of the expressway segment. The ®nal output is
obtained by applying the Singleton method to the 11th
fuzzy decision table in the 4th layer.

3.4.2. Fuzzi®cation process
Each fuzzy decision table takes in two inputs (either

occupancy or volume); one value is from the upstream
portion and the other is from the downstream portion
of the expressway at the same time. Each input is fuz-

zi®ed into one of seven di�erent fuzzy linguistic sets:
ZERO (ZO), POSITIVE SMALL-ZERO (PSZ), POSI-
TIVE SMALL (PS), POSITIVE SMALL-MEDIUM

Fig. 5. Block diagram showing the fuzzy process for the incident detection.

Fig. 6. Flowchart showing the incident-detection algorithm.
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(PSM), POSITIVE MEDIUM (PM), POSITIVE
MEDIUM-BIG (PMB) and POSITIVE BIG (PB),
with their corresponding degree-of-membership values.

This results in a 7 � 7 fuzzy decision table with 49
possible outputs and degrees-of-membership. As can
be seen from the multiplexer design, inputs at three
di�erent times, t, t ÿ 1 and t ÿ 2 are taken for each
tra�c index. To arrive at the output degree-of-mem-
bership, the AND operator (Eq. (1)) is ®rst applied to
the two inputs (antecedents) in each fuzzy set to get
the minimum value for the consequence. This is then
followed by applying the OR operator (Eq. (2)) to get
the maximum value among the consequences in each
of the seven di�erent fuzzy sets.

For this fuzzy controller, the seven outputs from
each of the seven sets from each fuzzy decision table in
each layer are then fed accordingly as inputs into the
subsequent layer of fuzzy decision tables, and the pro-
cess is repeated until it reaches the fourth and ®nal
layer. At this point, the Singleton method is applied to
defuzzify the outputs of the fuzzy sets of the last table
to produce a single output control action.

3.4.3. Decision table and membership functions
In each fuzzy decision table, each of the 49 values is

to be tuned by the GA to obtain a `near-optimal' de-
sign. A typical decision table for the algorithm is
shown in Fig. 8. There are eleven such decision tables
in the fuzzy algorithm, arranged in the layer-like struc-
ture shown in Fig. 7. Triangular and Gaussian mem-
bership functions are used in this algorithm.

3.5. Coding scheme using a GA

Fig. 9 shows one chromosome of the genes to be
tuned by genetic algorithm. There are 657 unknown
fuzzy parameters, of which 539 belong to the 11 de-
cision tables. To simplify the process and let the GA
converge, these 539 parameters are manually tuned.
The rest of the 118 fuzzy parameters include the cen-
troid values of the fuzzy parameters. Some of the par-
ameters use one GA gene while some use two genes,
resulting in a total of 719 genes in all. Non-binary cod-
ing is used for this process and since a base 7 decision
table is used, the values of the genes vary from 0 to 6.

Fig. 7. Block diagram for the fuzzy technique.
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1. TetaUS and TetaDS are used for selecting the
di�erent membership functions, either triangular or
Gaussian membership functions.

2. BetaUS, BetaDS, BL1 and BL2 are used for calcu-
lating the shape parameters and scale parameters of
the fuzzy Gaussian membership functions.

3. ESZ, EPM, ESM, EPM and EMB are used for cal-
culating the centroid values of the fuzzy Gaussian
membership functions during fuzzi®cation.

4. cal, cal1, cal2, cal3 and cal4 are used for calculating
the centroid values of the membership functions
during defuzzi®cation.

5. ISF is used to change the input scaling factors for
the normalized fuzzy values.

6. The rest of the 539 genes are used to tune the values
in the fuzzy decision tables.

3.5.1. Training by the GA
In the algorithm, genes for the chromosome are gen-

erated by a random-number generator with statistically
uniform deviations. These genes are input into a decod-
ing algorithm to obtain the fuzzy parameters, which
are fed into the fuzzy-set equations used subsequently
to arrive at results for the automated incident-detection
algorithm. This process is called `training by the gen-
etic algorithm' (on-line GA) whereby the algorithm
proceeds until a speci®ed number of generations, indi-

cated by the user, are reached, e.g. 100. When the best
chromosome is obtained, the genes are stored in
another ®le (¯data.txt) whereby they are then input
into another algorithm (o�-line GA) to obtain the
desired optimal results. The ¯owchart for the on-line
GA for one iteration is shown in Fig. 10.

4. Performance measures

The performance measures evaluate the average DR,
the FAR, the false-alarm interval, the current perform-
ance and the average time-to-detection of the incident
detection.

4.1. Average detection rate, mean time-to-detect and
current performance

The incident-detection algorithm is designed such
that the triggering of the fuzzy output pulse must
come later than the actual output pulse rise, in order
an incident block be considered to have been detected
(Fig. 11). The delay in detecting the actual incident
from the fuzzy output is called the TTD. The longest
time to detect is the longest TTD, while the average
time to detect is the average TTD.

The average detection rate AvgDR, is de®ned as:

AvgDR � 100:0� �No: of detected blocks�
Total no: of actual incident blocks

�7�

Another factor to be considered is the current per-
formance rate:

Current performance � 100:0� �DR� DV �
No: of inputÿ output pair

�8�

The DR is incremented whenever the detected fuzzy
output for an incident corresponds to the actual target
output. DV is incremented when the detected fuzzy
output for the incident-free condition corresponds to
the actual target output.

4.2. False-alarm rate calculation

A false-alarm interval occurs when the fuzzy output
is triggered to indicate an incident when the actual tar-
get output is zero (no incident). Fig. 12 shows the

Fig. 8. A typical fuzzy decision table.

Fig. 9. A typical chromosome used in the algorithm.

D. Srinivasan et al. / Engineering Applications of Arti®cial Intelligence 13 (2000) 311±322 319



Fig. 10. On-line training by the genetic algorithm.

Fig. 11. Block diagram showing the TTD calculation. Fig. 12. False-alarm block calculation.

D. Srinivasan et al. / Engineering Applications of Arti®cial Intelligence 13 (2000) 311±322320



actual output, with no incidence in and two cases of
fuzzy output values in the second and third diagrams.
A false-alarm block occurs only if one or more false-
alarm intervals happen continuously; therefore both
cases constitute a false-alarm block. A FAR that is
1% and below is within acceptable limits.

PercentFAR BK

� 100:0� �no: of detected false alarm blocks�
no: of incidentÿ free intervals

�9�

The whole incident-detection algorithm for the tra�c
network is coded using C++ and a user-friendly
graphical interface has also been developed.

5. Simulations and results

The simulations for this automated incident-detec-
tion algorithm were carried out on a Pentium 166
MHz personal computer using the primary data set.
The whole algorithm for the tra�c network was coded
using C++, and a user-friendly graphical interface
has also been developed.

Due to a large number of variables (657) and genes
(719) used, each iteration took approximately 10 min.
In the cascaded multiplexer design, there are a total of
11 decision tables for the four layers. Each decision
table consists of 49 linguistic variables. The variables
were tuned by the GA, which used a set of mainten-
ance rules. The Singleton method was used for the
defuzzi®cation process, and a crisp output value was
obtained for each set of data vectors for performance
evaluation. The AvgDRs, FARs and the ®tness values
are given in Fig. 13 for the two sets of data. On aver-
age, for the fault cases considered, a high DR of

70.0% and a low FAR of 0.83% were obtained. These
results are found to be very good for tra�c network
incident detection.

The incident-detection performance of the developed
fuzzy-GA algorithm was compared with an arti®cial
neural network approach (Cheu and Ritchie, 1995),
and with the California, McMaster and Minnesota al-
gorithms on a similar set of data. Persistence tests
(Cheu and Ritchie, 1995) were added to reduce false
alarms. With a persistence test of one interval, an inci-
dent alarm was issued if the output of the fault-detec-
tion algorithm changed from one state to another
(e.g., from incident-free to incident) and remained in
the changed state for another 30 s. Persistence tests of
up to three intervals were used. Table 2 shows the
results obtained. In case of California no. 8 and the
Minnesota algorithm, several sets of threshold values
were obtained and used for calculating the DR, FAR
and TTD. The threshold set that gave the lowest FAR
is listed in the table.

From the results obtained, it is noted that the fuzzy-
GA approach developed here performs generally better

Table 2

Comparison of incident-detection performance

Algorithm Persistence test DR (%) FAR (%) TD (s)

Fuzzy-GA 0 73.7 1.104 240

1 71.7 0.818 206

2 66.6 0.625 210

3 63.4 0.239 273

ANN (Cheu and Ritchie, 1995) 0 78 1.503 206

1 65 0.442 252

2 56 0.218 287

3 46 0.177 311

California no. 8 NA 49 0.571 255

NA 7 0.027 431

McMaster 0 37 2.075 260

1 27 0.612 295

2 22 0.299 316

3 17 0.163 346

Minnesota NA 76 3.048 229

NA 32 0.197 320

Fig. 13. Graph of incident detection vs. false-alarm rate for the two

data sets.
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than the ANN approach for persistence tests 1±3 by
giving a better DR and smaller TTD. However, the
FAR is generally higher than for the ANN. The results
also indicate that both these AI-based approaches are
superior compared to non-AI algorithms.

6. Conclusions

In this paper, a hybrid fuzzy-GA framework for
automated incident detection on expressways has been
presented. The algorithm uses a cascading framework
of 11 fuzzy decision tables, arranged into four layers
in a multiplexer-like design. The inputs to this inci-
dent-detection algorithm are the average occupancy
and average volume for 30 second intervals at the
upstream and downstream portions of an expressway
in California. A GA was used for optimising the 657
unknown fuzzy variables. The algorithm was tested on
a simulation data set containing 35,000 data vectors
obtained from INTRAS. The best chromosome yields
a high AvgDR of 70.0%, and a low FAR of 0.83%.
This algorithm was found to give superior perform-
ance compared to three non-AI algorithms for a simi-
lar set of data. In comparison to an arti®cial neural
network, this algorithm used a smaller time to detect
an incident, and generally gave a higher DR.

The simulation results have shown that the algor-
ithm using a combination of fuzzy logic and GAs
gives a high DR and a low alarm rate, and is very
promising for expressway incident detection. The
authors believe that the performance of this algorithm
could be further improved by using fuzzy maintenance
rules to converge the values of the fuzzy decision vari-
ables. Future work on this algorithm will involve the
automatic tuning of the decision tables to give the al-
gorithm more adaptability and ¯exibility, and the abil-
ity to learn intelligently.
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